GANDHI ACADEMY OF TECHNOLOGY AND ENGINEERING # **Department of Electronics and Communication Engineering** #### Subject: Basic Electronics Engineering (Code: RBL1B001) After completion of the course, students should be able to: - CO₁: Describe the principle and properties of a semiconductor diode - CO₂: Analyse different transistor configurations - CO₃: Describe the operation of a field effect transistor (FET). - CO₄: Analyse CMOS inverters and the design of various CMOS - CO₅: Use feedback amplifiers and op amps. - CO₆: Remember the basics of various digital arithmetic operations ## Subject: Analog Electronic Circuits (Code: REC3C001) After completion of the course, students should be able to: - CO₁: Understanding MOS Field Effect Transistor. - CO₂: Analyse different transistor configurations. - CO₃: Understand small signal analysis of BJTs. - CO₄: Study high frequency response of FETs and BJTs. - CO₅: Analyse feedback amplifier, oscillators and power amplifier. - CO₆: Understand an Operational Amplifier. # Subject: Signals and Systems (Code: REC3C002) After completion of the course, students should be able to: - CO₁: Learn about the discrete time signals and systems - CO₂: Analyse discrete time LTI systems - CO₃: Study the continuous time Fourier series - CO₄: Study the continuous time Fourier transformation - CO₅: Analyse the Z-Transform and its application to the analysis of LTI systems - CO₆: Learn about the Discrete Fourier Transform ## Subject: Digital System Design (Code: REC4C002) After completion of the course student should be able to: - CO₁: Understand the number system, Boolean algebra and logic gates. - CO₂: Understand the K-map method for simplifying logic circuits. - CO₃: Understand combinational logic circuits. - CO₄: Analyze the construction of a synchronous sequential logic circuit. - CO₅: Analyze binary counters, memory and programmable logic. - CO₆: Explore IC logic families. #### Subject: Analog and Digital Communication (Code: REC5C002) After completion of the course student should be able to: - CO₁: Learning frequency domain representation of signals & basic modulation technique - CO₂: Understanding Gaussian noise and white noise characteristics in modulation systems. - CO₃: Study threshold effect in angle modulation and idea of pre-emphasis and - CO₄: Learn amplitude and pulse code modulation (PCM). - CO₅. Understand the concept of different modulation process and ISI. - CO₆: Learn about digital modulation trade-offs and equalization technique. ## Subject: Digital Signal Processing (Code: REC5C001) After completion of the course student should be able to: - CO₁: Study discrete time signals and systems. - CO₂: Analyse discrete time LTI systems - CO₃: Understanding Discrete Fourier Transform and its applications - CO₄: Analyse the structure and implementation of FIR filter - CO5: Discuss the structure for IIR filter - CO₆: Study of analog and digital filters #### Subject: Microprocessors & Microcontrollers (Code: REC5C003) After completion of the course student should be able to: - CO₁: Understand the architecture and features of 8086 microprocessors - CO₂: Study of 16 bit microprocessors and basic instructions set - CO₃: Apply 8086 assembly language code to solve problems for arithmetic operations - CO₄: Understand about the microprocessor peripheral interfacing - CO₅: Study on 8-bit microcontroller- H/W architecture instruction set and programming - CO₆: Learn on interfacing of A-to-D converter and D-to-A converter. ## **Subject: Microwave Engineering (Code: RCS6C001)** After completion of the course student should be able to: - CO₁: Discuss high frequency transmission lines and wave guides - CO₂: Study different types of wave guider - CO₃: Analyse TEM mode in Co-ax line - CO₄: Learn about waveguide Components - CO₅: Study about principle of operation as an amplifier at high frequency - CO₆: Analyse microwave antennas #### Subject: Wireless Communication (Code: RCS6C002) After completion of the course student should be able to: - CO₁: Gain knowledge about the concept of mobile & personal communication - CO₂: Discuss the propagation models for wireless networks - CO₃: Gain brief idea on multiple access techniques in wireless communications - CO₄: Estimate spectral efficiency of different wireless access technologies - CO₅: Analyse second generation mobile networks-GSM - CO₆: Study applications of different RF bands ## Subject: Biomedical Instrumentation (Code: REI6D002) After completion of the course student should be able to: - CO₁: Learn about bioengineering, biochemical engineering, biomedical engineering - CO₂: Gain brief idea on bioelectrical signals & electrodes. - CO₃: Analyse electrodes for ECG. - CO₄: Study physiological transducers. - CO₅: Analyse basic recording systems. - CO₆: Analyse electrostatic coupling to AC signals. #### Subject: Radar and TV Engineering (Code: REC7D006) After completion of the course student should be able to: - CO₁: Get introduced to different radar system - CO2: Discuss about radar transmitters and receivers - CO₃: Gain brief idea on Television: scanning, blanking & synchronization - CO₄: Analyse video detectors, sound signal separation - CO₅: Study Digital TV: Digitized video, source coding of digitized video - CO₆: Analyse display technologies #### Subject: Digital Image Processing (Code: REC7D002) After completion of the course student should be able to: - CO₁: Review the fundamental concepts of a digital image processing system - CO₂: Analyse images in the frequency domain using various transforms. - CO₃: Evaluate the techniques for image enhancement and image restoration. - CO₄: Categorize various compression techniques. - CO₅: Interpret Image compression standards. - CO₆: Interpret image segmentation and representation techniques.